
Introduction 1D case 2D case 3D case Conclusions

On compact finite differences for the Poisson
equation

Peter Arbenz, IT4I Ostrava/ETH Zurich

Talk at TU Ostrava, September 3, 2020

Talk at PSI, October 22, 2019 1/34

Introduction 1D case 2D case 3D case Conclusions

Outline

Introduction

1D Poisson problems

2D Poisson problems

3D Poisson problems

Conclusions

Talk at PSI, October 22, 2019 2/34

Introduction 1D case 2D case 3D case Conclusions

Motivation from beam dynamics

1. Vlasov-Poisson formulation for particle evolution
• In physical devices like accelerators 109 . . . 1014 (or more)

charged particles are accelerated in electric fields.

• Instead of computing with individual particles one considers
particle density f (x, v, t) in phase space (position-velocity
(x, v) space).

• Vlasov equation describes the evolving particle density

df

dt
= ∂t f + v · ∇xf +

q

m0
(E + v × B) · ∇vf = 0,

where E and B are electric and magnetic fields, respectively.

• The charged particles are ‘pushed’ by Newton’s law

dx(t)

dt
= v,

dv(t)

dt
=

q

m0
(E + v × B) .

Talk at PSI, October 22, 2019 3/34

Introduction 1D case 2D case 3D case Conclusions

Motivation from beam dynamics (cont.)
• The determination of E and B is done in the co-moving

Lorentz frame where B̂≈0 and

Ê = −∇φ̂,

where the electrostatic potential φ̂ is the solution of the
Poisson problem

−∆φ̂(x) =
ρ̂(x)

ε0
, (1)

equipped with appropriate boundary conditions.

• The charge densities ρ is proportional to the particle density.

Talk at PSI, October 22, 2019 4/34

Introduction 1D case 2D case 3D case Conclusions

Motivation from beam dynamics (cont.)
2. Particle-in-cell (PIC) method in N-body Simulations

• Interpolate individual particle charges to a
rectangular grid

• Discretize the Poisson equation by finite
differences on the rectangular grid

• This leads to a system of linear equations

Ax = b. (2)

b denotes the interpolated charge densities at the mesh points.

• Solve the Poisson equation on the mesh in a Lorentz frame

• O(n log n) operations needed provided that the domain is
rectangular.

Talk at PSI, October 22, 2019 5/34

Introduction 1D case 2D case 3D case Conclusions

Purpose of the talk

• Poisson equation on rectangular domains often solved by finite
differences (5-point stencil).
Ditto in 3D with the 7-point stencil.

• These methods converge with O(h2) in the mesh width h.

• Higher orders of accuracy requires bigger stencils or more
brain.

• Higher orders of accuracy lead to (much) smaller linear
systems of equations for the same accuracy.

• We discuss how to get fourth order compact finite difference
schemes.

• Emphasis is on rectangular grids and on fast (FFT-based)
Poisson solvers.

Talk at PSI, October 22, 2019 6/34

Introduction 1D case 2D case 3D case Conclusions

References

1. L. Collatz. Numerische Behandlung von Differentialgleichungen.
Springer, Berlin-Heidelberg, 1951. (−→ Mehrstellenmethode)

2. R. J. LeVeque. Finite Difference Methods for Ordinary and Partial
Differential Equations. SIAM, 2007.

3. W. F. Spotz and G. F. Carey. A high-order compact formulation for
the 3D Poisson equation. Numer. Methods Partial Differ.
Equations, 12:235–243, 1996.

4. S. O. Settle, C. C. Douglas, I. Kim, and D. Sheen. On the
derivation of highest-order compact finite difference schemes for the
one- and two-dimensional Poisson equation with Dirichlet boundary
conditions. SIAM J. Numer. Anal., 51:2470–2490, 2013.

5. E. Deriaz. Compact finite difference schemes of arbitrary order for
the Poisson equation in arbitrary dimensions. BIT Numer. Math.,
60:199–233, 2020.

Talk at PSI, October 22, 2019 7/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: problem statement

• Interval I = (0, a)

• Poisson equation:

−u′′(x) = f (x), 0 < x < a, u(0) = u(a) = 0.

• Equidistant mesh 0 = x0 < x1 < · · · < xn < xn+1 = a.

• Mesh width h = xj − xj−1 = a/(n + 1).

• Approximation uj ≈ u(xj).

• Approximate Poisson equation by

−uj−1 + 2uj − uj+1

h2
= f (xj), 1 ≤ j ≤ n. (3)

Talk at PSI, October 22, 2019 8/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: linear system

The n equations in (3) can be collected in matrix equation

1

h2
Tnu =

1

h2


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




u1
u2
...

un−1
un

 =


f (x1)
f (x2)

...
f (xn−1)
f (xn)

 = f .

Tn ∈ Rn×n has the spectral decomposition

Tn = QnΛnQ
T
n , (4)

with diagonal Λn

Λn = diag(λ
(n)
1 , . . . , λ

(n)
n), λ

(n)
k = 4 sin2 kπ

2(n + 1)
. (5)

Talk at PSI, October 22, 2019 9/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: linear system (cont.)

Qn is orthogonal, i.e., Q−1n = QT
n , with elements

qjk =

(
2

n + 1

)1/2

sin
jkπ

n + 1
.

Multiplying with Qn or QT
n is related to the Fourier transform.

If n is chosen properly then the Fast Sine Transform (∼Fast
Fourier Transform) can be employed to solve (3).

This does not make much sense in the 1D case, since the direct
solution (Gaussian elimination) costs only O(n) flops.

Talk at PSI, October 22, 2019 10/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: local truncation error

The local truncation error is obtained by plugging the exact
solution in the FD formula,

−u(x − h) + 2u(x)− u(x + h)

h2
− f (x) = τ(x ; h)

Talk at PSI, October 22, 2019 11/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: local truncation error (cont.)

A Taylor series expansion gives

u(xj−1)− 2u(xj) + u(xj+1)

= u(xj)− hu′(xj) +
h2

2
u′′(xj)−

h3

6
u′′′(xj) +

h4

24
u′′′′(xj) + · · ·

− 2u(xj)

+ u(xj) + hu′(xj) +
h2

2
u′′(xj) +

h3

6
u′′′(xj) +

h4

24
u′′′′(xj) + · · ·

= h2u′′(xj) +
h4

12
u′′′′(xj) +O(h6)

Talk at PSI, October 22, 2019 12/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: local truncation error (cont.)

A Taylor series expansion gives

u(xj−1)− 2u(xj) + u(xj+1)

= h2u′′(xj) +
h4

12
u′′′′(xj) +O(h6)

or, using −u′′(x) = f (x),

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= f (xj)−

h2

12
u′′′′(xj) +O(h4)︸ ︷︷ ︸

τ(xj)

(6)

Talk at PSI, October 22, 2019 13/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: local truncation error (cont.)

A Taylor series expansion gives

u(xj−1)− 2u(xj) + u(xj+1)

= h2u′′(xj) +
h4

12
u′′′′(xj) +O(h6)

or, using −u′′(x) = f (x),

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= f (xj)−

h2

12
u′′′′(xj) +O(h4)︸ ︷︷ ︸

τ(xj)

(6)

Talk at PSI, October 22, 2019 13/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: global error

−uj−1 + 2uj − uj+1

h2
= f (xj). (7)

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= −u′′(xj) + τ(xj). (8)

Subtracting (7) from (8) we get for the error e(xj) = u(xj)− uj

h−2Tne = τ .

So, the L2-error behaves like the local truncation error since

‖h2T−1n ‖2 <
a2

8
for all n.

8/a2 is a lower bound for the smallest eigenvalue of h−2Tn.

Talk at PSI, October 22, 2019 14/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: Improving accuracy

1. Use longer stencil

1

12h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) = f (xj)

2.

Talk at PSI, October 22, 2019 15/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: Improving accuracy

1. Use longer stencil

1

12h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) = f (xj)

2. Closer look at truncation error

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= −u′′(xj)+τ(xj).

Talk at PSI, October 22, 2019 15/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: Improving accuracy

1. Use longer stencil

1

12h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) = f (xj)

2. Closer look at truncation error

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= −u′′(xj)−

h2

12
u′′′′(xj) +O(h4)

Talk at PSI, October 22, 2019 15/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: Improving accuracy

1. Use longer stencil

1

12h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) = f (xj)

2. Closer look at truncation error

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= −u′′(xj)−

h2

12
u′′′′(xj) +O(h4)

Replace finite difference stencil by

−uj−1 + 2uj − uj+1

h2
= f (xj) +

h2

12
f ′′(xj) (9)

Talk at PSI, October 22, 2019 15/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: Improving accuracy

1. Use longer stencil

1

12h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) = f (xj)

2. Closer look at truncation error

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= −u′′(xj)−

h2

12
u′′′′(xj) +O(h4)

Replace finite difference stencil by

−uj−1 + 2uj − uj+1

h2
= f (xj) +

h2

12
f ′′(xj) (9)

or

−uj−1 + 2uj − uj+1

h2
= f (xj) +

1

12
(f (xj−1)− 2f (xj) + f (xj+1))

(10)

Talk at PSI, October 22, 2019 15/34

Introduction 1D case 2D case 3D case Conclusions

The 1D case: Matlab demo

generate convergence plot1D

Talk at PSI, October 22, 2019 16/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: problem statement

• Rectangle Ω = (0, ax)× (0, ay)

• Poisson equation

−∇2u(x , y) = f (x , y) in Ω, u = 0 on ∂Ω. (11)

• Rectangular mesh: nx + 2× ny + 2 grid points (incl. boundary)

• Mesh widths: hx = ax/(nx + 1) and hy = ay/(ny + 1)

• 5-point stencil is most used approximation of the Laplacian

• Approximation uij ≈ u(xi , yj)

• Approximate Poisson equation by

−ui−1,j + 2uij − ui+1,j

h2x
+
−ui ,j−1 + 2uij − ui ,j+1

h2y
= f (xi , yj)

(12)
for 0 < i ≤ nx , 0 < j ≤ ny .

Talk at PSI, October 22, 2019 17/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: stencil

Often, the discretized Poisson equation is displayed as a stencil

which shows nicely the five involved grid points with their weights.

Talk at PSI, October 22, 2019 18/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: linear system

Collect the uij/f (xi , yj) in a vector u, f ∈ Rnxny .

The nxny equations in (12) can be collected in matrix form(
1

h2x
Iny ⊗ Tnx +

1

h2y
Tny ⊗ Inx

)
u = f , (13)

where ⊗ denotes Kronecker product. Using the spectral
decomposition (4) of Tn, (13) can be written as

(Qny ⊗Qnx)(
1

h2x
Iny ⊗Λnx +

1

h2y
Λny ⊗ Inx)(QT

ny ⊗QT
nx)u = f . (14)

Matrix in the middle is diagonal.

With n = nxny , (14) can be solved with O(n log n) flops, if FFT is
applicable.

Talk at PSI, October 22, 2019 19/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: truncation error

Local truncation error for 5-point stencil is

−∇2
5u(x , y)− f (x , y) = −h2x

12
∂4xu(x , y)−

h2y
12
∂4yu(x , y)+O(h4x +h4y).

Can we do better in 2D as well?

Talk at PSI, October 22, 2019 20/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: improving accuracy

Define a 9-point (compact) stencil

∇2
9ui ,j ≡ ∇2

5ui ,j +
1

12

(
4ui ,j − 2(ui+1,j + ui−1,j + ui ,j+1 + ui ,j−1)

+ ui+1,j+1 + ui−1,j+1 + ui+1,j−1 + ui−1,j−1

)(1

h2x
+

1

h2y

)
.

For the local truncation error of the Poisson equation we get

−∇2
9u(x , y)− f (x , y) =− h2x

12

(
∂4xu(x , y) + ∂2x∂

2
yu(x , y)

)
−
h2y
12

(
∂2x∂

2
yu(x , y) + ∂4yu(x , y)

)
+O((h2x + h2y)2),

which does not look like an improvement w.r.t. the 5-pt stencil.

Talk at PSI, October 22, 2019 21/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: improving accuracy (cont.)

BUT

−∇2
9u(x , y)− f (x , y) =− h2x

12

(
∂4xu(x , y) + ∂2x∂

2
yu(x , y)

)
−
h2y
12

(
∂2x∂

2
yu(x , y) + ∂4yu(x , y)

)
+O((h2x + h2y)2)

Talk at PSI, October 22, 2019 22/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: improving accuracy (cont.)

BUT

−∇2
9u(x , y)− f (x , y) =− h2x

12

(
∂4xu(x , y) + ∂2x∂

2
yu(x , y)

)
−
h2y
12

(
∂2x∂

2
yu(x , y) + ∂4yu(x , y)

)
+O((h2x + h2y)2)

= −h2x
12

(
∂2x (∂2xu(x , y) + ∂2yu(x , y))

)
−
h2y
12

(
∂2y (∂2xu(x , y) + ∂2yu(x , y))

)
+ · · ·

Talk at PSI, October 22, 2019 22/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: improving accuracy (cont.)

BUT

−∇2
9u(x , y)− f (x , y) =− h2x

12

(
∂4xu(x , y) + ∂2x∂

2
yu(x , y)

)
−
h2y
12

(
∂2x∂

2
yu(x , y) + ∂4yu(x , y)

)
+O((h2x + h2y)2)

= −h2x
12

(
∂2x (∂2xu(x , y) + ∂2yu(x , y))

)
−
h2y
12

(
∂2y (∂2xu(x , y) + ∂2yu(x , y))

)
+ · · ·

= −h2x
12

∂2x∇2u(x , y)−
h2y
12

∂2y∇2u(x , y) + · · ·

Talk at PSI, October 22, 2019 22/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: improving accuracy (cont.)

BUT

−∇2
9u(x , y)− f (x , y) =− h2x

12

(
∂4xu(x , y) + ∂2x∂

2
yu(x , y)

)
−
h2y
12

(
∂2x∂

2
yu(x , y) + ∂4yu(x , y)

)
+O((h2x + h2y)2)

= −h2x
12

(
∂2x (∂2xu(x , y) + ∂2yu(x , y))

)
−
h2y
12

(
∂2y (∂2xu(x , y) + ∂2yu(x , y))

)
+ · · ·

= −h2x
12

∂2x∇2u(x , y)−
h2y
12

∂2y∇2u(x , y) + · · ·

=
h2x
12

∂2x f (x , y) +
h2y
12

∂2y f (x , y) +O((h2x + h2y)2)

Talk at PSI, October 22, 2019 22/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: improving accuracy (cont.)

If the second derivatives of f not available or too expensive to
compute, replace them by finite differences:

A fourth order local truncation error is the best one can get in 2D
by compact FD (Settle et al. SINUM 2013).

Talk at PSI, October 22, 2019 23/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: improving accuracy (cont.)

Truncation error with 4-th order terms exposed:

τ(x , y) =−∇2
9u(x , y)− f (x , y)− h2x

12
∂2x f (x , y)−

h2y
12
∂2y f (x , y) =

− h4x
720

(
2∂6xu(x , y) + 5∂4x∂

2
yu(x , y)

)
−

h2xh
2
y

144

(
∂4x∂

2
yu(x , y) + ∂2x∂

4
yu(x , y)

)
−

h4y
720

(
5∂2x∂

4
yu(x , y) + 2∂6yu(x , y)

)
+O((h2x + h2y)3).

If grid is square (h = hx = hy) then the fourth order term can be

expressed as h4

360(∇4f + 2∂2x∂
2
y f).

Talk at PSI, October 22, 2019 24/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: linear system for compact FD

The matrix form of the stencil before is(
1

h2x
Iny ⊗ Tnx +

1

h2y
Tny ⊗ Inx −

1

12

(
1

h2x
+

1

h2y

)
Tny ⊗ Tnx

)
u

=

(
I − 1

12
(Iny ⊗ Tnx + Tny ⊗ Inx)

)
f

Using the spectral decompositions of the matrices Tnx , Tny gives

u = (Qny ⊗Qnx)

(
h2y Iny ⊗Λnx + h2xΛny ⊗ Inx −

h2x + h2y
12

Λny ⊗Λnx

)−1
× h2xh

2
y

(
I − 1

12
(Iny ⊗Λnx + Λny ⊗ Inx)

)
(QT

ny ⊗QT
nx)f

In the middle there is again a diagonal matrix.

Talk at PSI, October 22, 2019 25/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: numerical example

ax = 0.9, ay = 1.1,

u(x , y) = sin(πx/ax) sin(3πy/ay).

f (x , y) = −∇2u(x , y) = π2
(

1

a2x
+

9

a2y

)
sin

πx

ax
· sin

3πy

ay
.

In the Matlab code the approximation error is plotted versus the
mesh width h ∼ 1/n. The norm of the error is computed as

‖e‖ =

√√√√ 1

nxny

nx∑
i=1

ny∑
j=1

|ui ,j − u(xi , yj)|2.

In this example we have n = nx = ny .

Talk at PSI, October 22, 2019 26/34

Introduction 1D case 2D case 3D case Conclusions

The 2D case: Matlab demo

generate convergence plot2D

Talk at PSI, October 22, 2019 27/34

Introduction 1D case 2D case 3D case Conclusions

The 3D case: problem statement

• Cuboid Ω = (0, ax)× (0, ay)× (0, az)

• Poisson equation

−∇2u(x , y , z) = f (x , y , z) in Ω, u = 0 on ∂Ω. (15)

• Rectangular mesh: (nx +2)× (ny +2)× (nz +2) grid points

• Mesh widths: hx , hy , hz
• 7-point stencil is standard approximation of the Laplacian

• Approximation uij ≈ u(xi , yj)

• In interior nxnynz grid points approximate Poisson eq. by

−ui−1,j ,k + 2uijk − ui+1,j ,k

h2x
+
−ui ,j−1,k + 2uijk − ui ,j+1,k

h2y

+
−ui ,j ,k−1 + 2uijk − ui ,j ,k+1

h2z
= f (xi , yj , zk)

Talk at PSI, October 22, 2019 28/34

Introduction 1D case 2D case 3D case Conclusions

The 3D case: linear system for the 7-point stencil

Collect values uijk , f (xi , yj , zk) in vectors u, f ∈ Rnxnynz , similarly
as in the 2D case. Then, the matrix form of above equations is(

1

h2x
Inz ⊗ Iny ⊗ Tnx +

1

h2y
Inz ⊗ Tny ⊗ Inx +

1

h2z
Tnz ⊗ Iny ⊗ Inx

)
u = f .

Using the spectral decomposition of the T ’s this becomes

(Qnz ⊗Qny ⊗Qnx)(
1

h2x
Inz ⊗ Iny ⊗Λnx +

1

h2y
Inz ⊗Λny ⊗ Inx +

1

h2z
Λnz ⊗ Iny ⊗ Inx

)
(QT

nz ⊗QT
ny ⊗QT

nx) u = f .

The diagonal matrix in the middle can be precomputed.

Talk at PSI, October 22, 2019 29/34

Introduction 1D case 2D case 3D case Conclusions

The 3D case: linear system for 4th order 19-point stencil

Cf. Spotz&Carey

Talk at PSI, October 22, 2019 30/34

Introduction 1D case 2D case 3D case Conclusions

The 3D case: linear system for 4th order 19-point stencil
(cont.)

The matrix form of this stencil is(
1

h2x
Inz ⊗ Iny ⊗ Tnx +

1

h2y
Inz ⊗ Tny ⊗ Inx +

1

h2z
Tnz ⊗ Iny ⊗ Inx

− 1

12

(
1

h2x
+

1

h2y

)
Inz ⊗ Tny ⊗ Tnx −

1

12

(
1

h2x
+

1

h2z

)
Tnz ⊗ Iny ⊗ Tnx

− 1

12

(
1

h2y
+

1

h2z

)
Tnz ⊗ Tny ⊗ Inx

)
u

=

(
I − 1

12
(Inz ⊗ Iny ⊗ Tnx + Inz ⊗ Tny ⊗ Inx + Tnz ⊗ Iny ⊗ Inx)

)
f .

Remark: Spotz&Carey also give a O(h6) 27-pt stencil for the Laplacian

that does not lead to a compact stencil for the Poisson equation, though.

Talk at PSI, October 22, 2019 31/34

Introduction 1D case 2D case 3D case Conclusions

The 3D case: numerical example

ax = 1.1, ay = 1.0, az = 0.9,

f (x , y , z) = π2
(

1

a2x
+

9

a2y
+

25

a2z

)
sin(

πx

ax
) sin(

3πy

ay
) sin(

5πz

az
).

u(x , y , z) = sin(πx/ax) sin(3πy/ay) sin(5πz/az).

in the Matlab code the approximation error is plotted versus the
mesh width h ∼ 1/n. The norm of the error is computed as

‖e‖ =

√√√√ 1

nxnynz

nx∑
i=1

ny∑
j=1

nz∑
k=1

|ui ,j ,k − u(xi , yj , zk)|2.

In this example we have n = nx = ny = nz .

Talk at PSI, October 22, 2019 32/34

Introduction 1D case 2D case 3D case Conclusions

The 3D case: Matlab demo

generate convergence plot3D

Talk at PSI, October 22, 2019 33/34

Introduction 1D case 2D case 3D case Conclusions

Conclusions

• High-order methods can generate accurate solutions on coarse
grids

• Solutions have to be smooth enough

• Matrices get denser as order increases, but we use its spectral
decomposition and FFT

• Class of operators is limited, but Laplacian is fine

• In 3D 6th order is possible but the stencil for the right-hand
side is not compact anymore

• To use compact FD inside other software, the (input) data
has to be accurate

Talk at PSI, October 22, 2019 34/34

	Introduction
	

	1D Poisson problems
	

	2D Poisson problems
	

	3D Poisson problems
	

	Conclusions
	

